
Dissecting CoreBot, From Loader to Config

Jason Reaves

December 10, 2015

Abstract

While analyzing the CoreBot malware I hope to show my work reverse
engineering a number of the routines used by Corebot as well as break
down most of the encryption used to conceal various portions of data used
by the bot. By doing so we can hope to not only help security researchers
gain insight into the workings of this bot but also help incident response
personnel with being able to understand the bot in hopes that they can
better detect or prevent infections in their respective environments.

Keywords - Reverse Engineering, Malware Analysis, CoreBot, Banking
Trojan

1

ar
X

iv
:s

ub
m

it/
14

27
80

7
 [

cs
.C

R
]

 1
0

D
ec

 2
01

5

Figure 1: FolderName Generate

Figure 2: Encrypted File

1 Introduction

Corebot is a relatively new bot commonly found being delivered by a newer
Kovter variant at the time of this writing. The goal of Corebot appears to be in
data and credential theft, coming with modules commonly found in most of the
bigger banking trojans such as a keylogger module, a stealer(pony) module and
a module for performing mitm with the browser in order to facilitate credential
theft for targeted institutions found in a zeus-like config.

2 Loader

Most of the relevant data stored on disk was found in APPDATA\local\Microsoft

in a series of sub folders. The subfolder names are generated by XORing the
computers volume serial number against a few sets of 16 byte hex strings and

2

from Crypto . Cipher import AES
import b i n a s c i i
import sys
#AES key f o r main corebo t component
#11 bf f5d5cfad69e638e73f00e35a2b3c77ab5710692c42dfe4e5e7aa6e54a75e
#AES key f o r corebo t modules
#1473 c09a3ce86f1f5d2bf8e69e5eec2598e380d740cc68a7c58019b9c5799388

data = open (sys . argv [1] , ’ rb ’) . read ()

key = b i n a s c i i . unhex l i f y (’ 11 bf f5d5c fad69e638e73f00e35a2b3c77ab5710692c42dfe4e5e7aa6e54a75e ’)
#Modules
#key = b i n a s c i i . u nh e x l i f y (’1473 c09a3ce86f1f5d2bf8e69e5eec2598e380d740cc68a7c58019b9c5799388 ’)

i v = b i n a s c i i . unhex l i f y (’ 00 ’ ∗16)

aes = AES. new(key , AES.MODE CBC, iv)

decrypted = aes . decrypt (data)

open (sys . argv [1]+ ’ . decr ’ , ’wb ’) . wr i t e (decrypted)

Figure 3: CoreBot component decryption

then sprintf the hex data into the format string %08x-%04x-%04x-%02x%02x-%

02x%02x%02x%02x%02x%02x (Figure 1). The loader finds the encrypted corebot
module on disk by recreating the pathnames, at this point it decrypts the mod-
ule using an hardcoded AES key and a zeroed 16 byte IV(Figure 2). A POC
for decrypting both the main CoreBot component and its modules can be seen
in Figure 3. This main module is spun up into a hollowed out svchost.exe.

3 Main Module

The main module of CoreBot uses a similar routine for path names, registry
keys and encryption keys. I’ve pulled out some of the hardcoded hex data used
to generate this data and written a small proof of concept for some of the items
in Figure 4, in the script you can see the hardcoded hex data used to produce
multiple folder names, file names, the registry persistence key and the RC4 key
used to encrypt the CoreBot settings file. The settings file is constantly updated
during CoreBots activity, it’s not only used by the loader, the main CoreBot
module but also used by the downloaded modules themselves.

3

4 Watchdog

The svchost.exe spins up a dllhost.exe and connects to a named pipe ’core ps’,
the process writes it’s processid to the named pipe while the watchdog process
also communicates with a heartbeat pipe(Figure 5). Should the watchdog not
receive a proper response in the proper time frame then it will interrupt the main
process tearing it down and then spinning up the loader again. Using WinDBGs
child process ability however we can attach in during the loader process, finding
relevant code sections that look interesting for exploration in IDA we can set
our breakpoints and then pause the watchdog to easily circumvent this system.

5 Modules

The decrypted modules can be seen in Figure 6. All modules communicate with
the main CoreBot component over the core ps pipe, the stealer component works
similar to Pony malware except that it packages up all the data and sends it to
the main component for delivery to the C2. The keylogger will log keystrokes
to a text file which gets GZIP compressed and also sent back for delivery to the
C2. The mitm module is a bit more complex in that it has references in the
settings to it’s own config and an interval on when it should be updated.

6 Settings

The settings file stored on disk is in the core.work dir which is the same directory
where the encrypted main module is kept. To generate the RC4 key needed to
decrypt this file you take the hardcoded hex data stream and the volume serial
number(VSN). The VSN will be XORd with the hardcoded dword 0x42ab3122
and then this value will be XORd against every dword in the hardcoded hex
stream while rolling the key to the right 2 bytes every iteration. A proof of
concept script for decrypting a settings fail can be found in Figure 7. In this
decrypted settings file you can find the RC4 key used to decrypt C2 traffic which
is called core.server key.

7 C2 Traffic

C2 traffic is encrypted with RC4 using the core.server key from the settings
file(Figure 8). Aside from checkins and messages there are a few big areas that
most people will be interested in when it comes to banking trojans, the modules
and the config(Figure 9). In both cases the data is RC4 encrypted on top
of custom structured data, in the case of the modules there is extra header
data on top describing the module(Figure 10). In both cases however it boils
down to the same structure of a single byte, dword and blob of zlib compressed
data(Figure 11).
Going through getting the config from the C2 traffic, we start with the encrypted

4

data(Figure 12) from there we simply RC4 decrypt the data and then pull out
the length of the compressed blob that follows as seen in Figure 13. A quick
decompress and we can see the beginnings of an unparsed config(Figure 14).

8 Conclusions

Sample SHA256: 781c6743230918c591b20121ab34ff639968ac14c958f6207effbba465b71ee0

8.1 Signatures

ET: ET TROJAN Corebot Checkin

Yara:

rule CoreBot_Scan_Mem {

strings:

$s0 = "core.dga"

$s1 = "core.server_key"

$s2 = "core_ps"

$m0 = "keylogger.dll"

$m1 = "stealer.dll"

$m2 = "m3.dll"

$m3 = "mitm"

condition:

any of ($s*) and any of ($m*)

}

References

[1] Hex-Rays Decompiler, http://www.hex-rays.com/products/decompiler/index.shtml.

[2] Python, https://www.python.org/

[3] Python and Bitwise Rotation, http://www.falatic.com/index.php/108/python-
and-bitwise-rotation

[4] Emerging Threats, http://www.emergingthreats.net/

5

http://www.hex-rays.com/products/decompiler/index.shtml
http://www.falatic.com/index.php/108/python-and-bitwise-rotation
http://www.falatic.com/index.php/108/python-and-bitwise-rotation
http://www.emergingthreats.net/

import ctypes
import b i n a s c i i
import s t r u c t

f i l e k e y 1 = b i n a s c i i . unhex l i f y (’ 74 c16ccc7a2928459911b21a2fd4d8be ’)
regkey1 = b i n a s c i i . unhex l i f y (’ 3 aa7af21467cf0429694560492b893a0 ’)
f o l d e r k e y 1 = b i n a s c i i . unhex l i f y (’ 40 cd38f54df3ec43854bccb8b9931c48 ’)
f o l d e r k e y 2 = b i n a s c i i . unhex l i f y (’ b94afd7ee333414399d916b60956beaa ’)
rc4key = b i n a s c i i . unhex l i f y (’ 64306743 d52625f694d4e2d3654d63d81beac3a4a4bd4675 ’)

def gen name (vsn , fkey) :
(f1 , f2 , f3 , f 4) = s t r u c t . unpack (’< I I I I ’ , fkey)
new = s t r u c t . pack (’< I I I I ’ , f 1 ˆvsn , f 2 ˆ r o l (vsn , 2) , f 3 ˆ r o l (vsn , 4) , f 4 ˆ r o l (vsn , 6))
print ”%08x−%04x−%04x−%02x%02x−%02x%02x%02X%02X%02x%02x” % s t r u c t . unpack from (’<IHHBBBBBBBB’ , new)

def gen key (vsn , hkey) :
temp = vsn ˆ i n t (’ 42 ab3122 ’ ,16)
(f1 , f2 , f3 , f4 , f5 , f 6) = s t r u c t . unpack (’< I I I I I I ’ , hkey)
new = s t r u c t . pack (’< I I I I I I ’ , f 1 ˆtemp , f 2 ˆ ro r (temp , 2) , f 3 ˆ ro r (temp , 4) , f 4 ˆ ro r (temp , 6) , f 5 ˆ ro r (temp , 8) , f 6 ˆ ro r (temp , 1 0))
print (b i n a s c i i . h e x l i f y (new))

r o l = lambda val , r b i t s , max bits =32: \
(va l << r b i t s%max bits) & (2 ∗∗ max bits−1) | \
((va l & (2∗∗max bits −1)) >> (max bits−(r b i t s%max bits)))

ro r = lambda val , r b i t s , max bits =32: \
((va l & (2∗∗max bits −1)) >> r b i t s%max bits) | \
(va l << (max bits−(r b i t s%max bits)) & (2∗∗max bits −1))

ke rne l32 = ctypes . w ind l l . ke rne l32

volumesn = ctypes . c u long ()
ke rne l32 . GetVolumeInformationW (ctypes . c wchar p (”C:\\ ”) , None , 0 , c types . byre f (volumesn) , None , None , None , 0)

vsn = volumesn . va lue

gen name (vsn , f o l d e r k e y 1)
gen name (vsn , f i l e k e y 1)
gen key (vsn , rc4key)
gen name (vsn , f o l d e r k e y 2)
gen name (vsn , regkey1)

Figure 4: CoreBot Folder/FileName and Key Generation POC

6

Figure 5: Main named pipe

7

Figure 6: CoreBot Modules
8

import ctypes
from Crypto . Cipher import ARC4
import b i n a s c i i
import s t r u c t
import sys

rc4key = b i n a s c i i . unhex l i f y (’ 64306743 d52625f694d4e2d3654d63d81beac3a4a4bd4675 ’)

def gen key (vsn , hkey) :
temp = vsn ˆ i n t (’ 42 ab3122 ’ ,16)
(f1 , f2 , f3 , f4 , f5 , f 6) = s t r u c t . unpack (’< I I I I I I ’ , hkey)
new = s t r u c t . pack (’< I I I I I I ’ , f 1 ˆtemp , f 2 ˆ ro r (temp , 2) , f 3 ˆ ro r (temp , 4) , f 4 ˆ ro r (temp , 6) , f 5 ˆ ro r (temp , 8) , f 6 ˆ ro r (temp , 1 0))
return (new)

ror = lambda val , r b i t s , max bits =32: \
((va l & (2∗∗max bits −1)) >> r b i t s%max bits) | \
(va l << (max bits−(r b i t s%max bits)) & (2∗∗max bits −1))

ke rne l32 = ctypes . w ind l l . ke rne l32

volumesn = ctypes . c u long ()
ke rne l32 . GetVolumeInformationW (ctypes . c wchar p (”C:\\ ”) , None , 0 , c types . byre f (volumesn) , None , None , None , 0)

vsn = volumesn . va lue

key = gen key (vsn , rc4key)

rc4 = ARC4. new(key)
data = open (sys . argv [1] , ’ rb ’) . read ()
open (sys . argv [1]+ ’ . decr ’ , ’wb ’) . wr i t e (rc4 . decrypt (data))

Figure 7: CoreBot Settings File Decryption POC

9

Figure 8: CoreBot C2 Data Process

Figure 9: CoreBot Traffic

10

Figure 10: CoreBot Decrypted Module

Figure 11: CoreBot Data Header

Figure 12: CoreBot Encrypted Config

Figure 13: CoreBot Decrypted Config Data Structure

Figure 14: CoreBot Decompressed Config

11

	1 Introduction
	2 Loader
	3 Main Module
	4 Watchdog
	5 Modules
	6 Settings
	7 C2 Traffic
	8 Conclusions
	8.1 Signatures

