arXiv:submit/1427807 [cs.CR] 10 Dec 2015

Dissecting CoreBot, From Loader to Config

Jason Reaves

December 10, 2015

Abstract

While analyzing the CoreBot malware I hope to show my work reverse
engineering a number of the routines used by Corebot as well as break
down most of the encryption used to conceal various portions of data used
by the bot. By doing so we can hope to not only help security researchers
gain insight into the workings of this bot but also help incident response
personnel with being able to understand the bot in hopes that they can
better detect or prevent infections in their respective environments.

Keywords - Reverse Engineering, Malware Analysis, CoreBot, Banking
Trojan

LCRT. memset

Figure 1: FolderName Generate

: 05 06 O7 05 09 0OA OB OC OD OE OF

' C4 19 DC 61 82 0OC 68 32 BE 74 56 :3%&.h.Ua, . .hiXzV
: 1D 5F 92 2B EA 62 53 A4 42 09 DD "OMEE. F+éb3=E.T
I FE A6 &1 E4 92 30 68 94 B9 36 19 &STal™p!.&'0h3'6.
' 39 FD 11 58 30 &5 9F B3 F& 2F 9C 1mhZ\97.X0.V%a/c

7L 27 E3 82 57 ED EO 59 72 EF DA «BEE€.z'&, Wiav¥yil
: ?F F7 B7 3B B3 3E EF 73 21 03 B diei*I.: -;3zis!.q
. 25 DD C4 59 ZA 9F 35 D7 56 1C D5 oxVANsTAT+¥E«v,0
. E7 45 C7 24 C8 1F E1 38 50 AL A7 <E.BOcECTE.&A8P5
: OC 1D 1B 30 C5 Bl E3 SD 4E CB 44 j=4."...0L+&.NED
" 52 CD 9F 3E 02 &F 12 BO 91 9F 89 EBAKR.RI¥>.o.® ¥=

E9 45 77 11 26 5E 11 E9 2B D9 2i XZ?Af'Ew.s&".&+0%

b B . = I} D AT A Ch ™™ S T2 D TA AN e D...."u'?'i':l'r...T'uHT

Figure 2: Encrypted File

1 Introduction

Corebot is a relatively new bot commonly found being delivered by a newer
Kovter variant at the time of this writing. The goal of Corebot appears to be in
data and credential theft, coming with modules commonly found in most of the
bigger banking trojans such as a keylogger module, a stealer(pony) module and
a module for performing mitm with the browser in order to facilitate credential
theft for targeted institutions found in a zeus-like config.

2 Loader

Most of the relevant data stored on disk was found in APPDATA\1local\Microsoft
in a series of sub folders. The subfolder names are generated by XORing the
computers volume serial number against a few sets of 16 byte hex strings and

from Crypto.Cipher import AES

import binascii

import sys

#AES key for main corebot component
#11bff5d5cfad69e638e73f00e35a2b3cT77ab5710692c42dfelebeTaabedjaTde
#AES key for corebot modules
#1473c¢09a83ce86f1f5d2bf8e69eb5eec2598e¢380d740cc68a7c58019b69¢5799588

data = open(sys.argv|[1l],’rb’).read()

key = binascii.unhexlify (’11bff5d5c¢fad69e638e73f00e35a2b3c77ab5710692c42dfedebeT
#Modules
#key = binascii.unhexlify(’1473¢09a3ce86f1f5d2bf8e69e5eec2598e¢380d740cc68a7c5801

iv = binascii.unhexlify (’00’%16)
aes = AES.new(key, AES.MODECBC, iv)
decrypted = aes.decrypt(data)

open(sys.argv[l]4+’'.decr’, ’'wb’).write(decrypted)

Figure 3: CoreBot component decryption

then sprintf the hex data into the format string %08x-%04x-%04x-%02x%02x~%
02x%02x%02x%02x%02x%02x (Figure . The loader finds the encrypted corebot
module on disk by recreating the pathnames, at this point it decrypts the mod-
ule using an hardcoded AES key and a zeroed 16 byte IV(Figure [2). A POC
for decrypting both the main CoreBot component and its modules can be seen
in Figure |3 This main module is spun up into a hollowed out svchost.exe.

3 Main Module

The main module of CoreBot uses a similar routine for path names, registry
keys and encryption keys. I've pulled out some of the hardcoded hex data used
to generate this data and written a small proof of concept for some of the items
in Figure [4 in the script you can see the hardcoded hex data used to produce
multiple folder names, file names, the registry persistence key and the RC4 key
used to encrypt the CoreBot settings file. The settings file is constantly updated
during CoreBots activity, it’s not only used by the loader, the main CoreBot
module but also used by the downloaded modules themselves.

4 Watchdog

The svchost.exe spins up a dllhost.exe and connects to a named pipe 'core_ps’,
the process writes it’s processid to the named pipe while the watchdog process
also communicates with a heartbeat pipe(Figure . Should the watchdog not
receive a proper response in the proper time frame then it will interrupt the main
process tearing it down and then spinning up the loader again. Using WinDBGs
child process ability however we can attach in during the loader process, finding
relevant code sections that look interesting for exploration in IDA we can set
our breakpoints and then pause the watchdog to easily circumvent this system.

5 Modules

The decrypted modules can be seen in Figure[6] All modules communicate with
the main CoreBot component over the core_ps pipe, the stealer component works
similar to Pony malware except that it packages up all the data and sends it to
the main component for delivery to the C2. The keylogger will log keystrokes
to a text file which gets GZIP compressed and also sent back for delivery to the
C2. The mitm module is a bit more complex in that it has references in the
settings to it’s own config and an interval on when it should be updated.

6 Settings

The settings file stored on disk is in the core.work_dir which is the same directory
where the encrypted main module is kept. To generate the RC4 key needed to
decrypt this file you take the hardcoded hex data stream and the volume serial
number(VSN). The VSN will be XORd with the hardcoded dword 0x42ab3122
and then this value will be XORd against every dword in the hardcoded hex
stream while rolling the key to the right 2 bytes every iteration. A proof of
concept script for decrypting a settings fail can be found in Figure [7] In this
decrypted settings file you can find the RC4 key used to decrypt C2 traffic which
is called core.server _key.

7 C2 Traffic

C2 traffic is encrypted with RC4 using the core.server_key from the settings
file(Figure . Aside from checkins and messages there are a few big areas that
most people will be interested in when it comes to banking trojans, the modules
and the config(Figure E[) In both cases the data is RC4 encrypted on top
of custom structured data, in the case of the modules there is extra header
data on top describing the module(Figure . In both cases however it boils
down to the same structure of a single byte, dword and blob of zlib compressed
data(Figure [11)).

Going through getting the config from the C2 traffic, we start with the encrypted

data(Figure from there we simply RC4 decrypt the data and then pull out
the length of the compressed blob that follows as seen in Figure A quick
decompress and we can see the beginnings of an unparsed config(Figure [14)).

8 Conclusions

Sample SHA256: 781c6743230918c591b20121ab34{t639968ac14c958f6207eftbbad65b71eel

8.1 Signatures
ET: ET TROJAN Corebot Checkin

Yara:

rule CoreBot_Scan_Mem {

strings:
$s0 = "core.dga"
$s1 = "core.server_key"
$s2 = "core_ps"

$m0 = "keylogger.dll"
$m1l = "stealer.dll"
$m2 = "m3.d11"
$m3 = "mitm"
condition:
any of ($s*) and any of ($mx*)

References

[1] Hex-Rays Decompiler, http://www.hex-rays.com/products/decompiler/index.shtml.
[2] Python, https://www.python.org/

[3] Python and Bitwise Rotation, http://www.falatic.com/index.php/108 /python-
and-bitwise-rotation

[4] Emerging Threats, http://www.emergingthreats.net/

http://www.hex-rays.com/products/decompiler/index.shtml
http://www.falatic.com/index.php/108/python-and-bitwise-rotation
http://www.falatic.com/index.php/108/python-and-bitwise-rotation
http://www.emergingthreats.net/

import ctypes
import binascii
import struct

filekeyl = binascii.unhexlify(’74c16ccc7a2928459911b21a2fd4d8be)

regkeyl = binascii.unhexlify (’3aa7af21467¢f0429694560492b893a0 ")

folderkeyl = binascii.unhexlify (’40cd38f54df3ec43854bcch8b9931c48 ")

folderkey2 = binascii.unhexlify (’b94afd7ee333414399d916b60956beaa’)

rcdkey = binascii.unhexlify (’64306743d52625{694d4e2d3654d63d81beac3adadbd4675)

def gen_name(vsn, fkey):
(f1, f2, 3, f4) = struct.unpack('<IIIT’, fkey)
new = struct.pack(’'<IIII’, f1°vsn, f2°rol(vsn, 2), f3°rol(vsn,4), f4 rol
print ”%08x—%04x—%04x—%02x%02x—%02x%02x %02X%02X%02x%02x” % struct .unpack

def gen _key(vsn, hkey):
temp = vsn ~ int(’42ab3122’,16)
(f1, f2, 3, f4, 5, f6) = struct.unpack(’'<IIIIII’, hkey)
new = struct.pack(’<IIIIII’, fl1 temp, f2°ror(temp, 2), f3 ror(temp,4), f
print (binascii.hexlify (new))

rol = lambda val, r_bits, max_bits=32: \
(val << r_bits%max_bits) & (2 ** max_bits—1) | \
((val & (2x*max_bits —1)) >> (max_bits —(r_bits%max_bits)))

ror = lambda val, r_bits, max_bits=32: \
((val & (2xxmax_bits—1)) >> r_bits%max_bits) | \
(val << (max_bits—(r_bits%max_bits)) & (2**max_bits—1))

kernel32 = ctypes.windll.kernel32

volumesn = ctypes.c_ulong()
kernel32.GetVolumelnformationW (ctypes.c_wchar_p (”"C:\\”), None, 0, ctypes.byref(v

vsn = volumesn.value

gen_name (vsn, folderkeyl)
gen_name (vsn, filekeyl)
gen_key (vsn, rcdkey)
gen_name (vsn, folderkey?2)
gen_name (vsn, regkeyl)

Figure 4: CoreBot Folder/FileName and Key Generation POC

File \DevicelMamedPipe\core_ps Oxla4

| File \DevicelMamedPipe\core_ps Nx1b4

Figure 5: Main named pipe

rod3. decr

Time taken : 0.073 zece Te

B Text
build_date=2015-11-20
build_number=246

|

|

I narme=mitm
I mainEd=riE4.dll
|

|

|

verzion=1.0. 245
main=m3&. dll
a2 dll

[

asktopymod.decr

2.decr E

Time taken : 0.000 zece Test

| Text |
hame=stealer
verzion=1.5.3

main=stealer.dl
ztaalar Al

Jesktopymodl.decr

id]. decr

Time taken : 0000 secs T

| T et |

name=keyplagger
wergion=1.3.1
main=keylogger. dil
keylogger. dil{#

Figure 6: CorgeBot Modules

import ctypes

from Crypto.Cipher import ARC4
import binascii

import struct

import sys

rcdkey = binascii.unhexlify (’64306743d52625{694d4e2d3654d63d81beac3adadbd4675)

def gen_key(vsn, hkey):
temp = vsn " int(’42ab31227,16)
(f1, f2, 3, f4, 5, f6) = struct.unpack('<IITIIIT’, hkey)
new = struct.pack ('<IIIIIT’, f1 temp, f2"ror(temp, 2), f3 ror(temp,4), f
return (new)

ror = lambda val, r_bits, max_bits=32: \
((val & (2%*max_bits —1)) >> r_bits%max_bits) | \
(val << (max_bits—(r_bits%max_bits)) & (2**max_bits—1))

kernel32 = ctypes.windll.kernel32

volumesn = ctypes.c_ulong()
kernel32.GetVolumelnformationW (ctypes.c_wchar_p (”C:\\”), None, 0, ctypes.byref(v

vsn = volumesn.value
key = gen_key(vsn, rcdkey)
rc4 = ARC4.new (key)

data = open(sys.argv|[1l], ’'rb’).read()
open(sys.argv|[l]4+ ’.decr’,’wb’). write(rc4.decrypt(data))

Figure 7: CoreBot Settings File Decryption POC

muy
mou
mou
call
test
jz

LEZPT 1ILNTYAr TS] .,

cas

ecx, offset aCore_server_ ke ; “core.server key®
[esp+i1Ch+var_188], bl
FindUalInSettings 418CFC

al, al
loc_4149F9

¥

i i =]

mou
lea
mou
sub
push
push
call
lea
mou
nush

edx, [esp+1i1Ch+uar_F8]
eax, [esi+h]
ecx, [esp+1i1Ch+uvar_F4]

edx, ecx
edi

eax

RC4 4BEGDY

eax, [esp+124h+var_EC]
[esp+124h+var EC], bl
PAX

Figure 8: CoreBot C2 Data Process

haloadaey. com
haloadmey. com
haloadoey, com
haloadasey, cam
haloadmey. com
haloadmey. com
haloadoey, com
haloadasey, cam
haloadmey. com
haloadoey, com
haloadasey, cam
haloadmey. com
haloadmey. com
haloadoey, com
haloadasey, cam
haloadmey. com
haloadmey. com
haloadasey, cam
haloadmey. com
haloadmey. com

Figure 9:

T T R T

564,533
5

5

14

5
377,322

I T T e T T R T |

CoreBot Traffic

10

0278020
0278033
0278046
0278059
027c806c
027c807£
0278092
027cz80a5
027cz80b3
027c80ch
027cz80de
027c80£1
027c8104
0278117
027c812a
027c813d
0278150
027c8163
0278176
0278149
027c819%
027c8laf

an

34
ad
an
a7
0d
50
21
bb
41
ch
4f
30
7e
60
bt
bd
5f
g4

a5

Figure 14: CoreBot Decompressed Config

11

... build date=201
5-11-20.build numbe
r=246 . name=mitm.mai
ned=mb4.dll. wersion
=1.0.246 main=n32.d
11

	1 Introduction
	2 Loader
	3 Main Module
	4 Watchdog
	5 Modules
	6 Settings
	7 C2 Traffic
	8 Conclusions
	8.1 Signatures

