
Advanced
 Windows 2000 Rootkits

 Detection

Jan K. Rutkowski
jkrutkowski@elka.pw.edu.pl

• Rootkits overview

• Prevention systems and their vulnerabilities

• Advanced rootkit technology

• Traditional detection

• Execution Path Analysis
– Idea

– Implementation

– Reliability

– Cheat resistance

• Detection summary

What can rootkit do?

• Hides processes

• Hides files or real file contents

• Hides registry keys or real key values

• Adds backdoor

• Hide backdoor presence
– from local admin

– from remote scanning

• Sniffs something

• etc, etc, ...

Native API (ntdll.dll)

User32.dllKernel32.dll

Win32 app

Native
app

own
‘int 0x2e’
 calls

...

IDTR

IDT

2Eh

SDT <- kThread.pSDT
ST <- SDT.ntoskrnl.ST
call ST[eax]

KiSystemService

...

ST

Rootkits
technology

modify execution path Change only data
structures (like
process linked list)

Service hooking/
DLL hooking.

Direct code change

„strange” function
pointers changes

Installing rootkit
• Userland rootkit

– Changing files on disk (depreciated)

– Changing memory of other processes (OpenProcess,
\Device\PhysicalMemory)

• Kernel mode rootkit
– Kernel Driver

• SCM API (official API to load module)

• ZwLoadDriver

• ZwSetSystemInformation (Greg Hoglund)

– \Device\PhysicalMemory (crazylord)

– Kernel Overflow (no proof-of-concept yet)

Appropriate registry
key required

Kernel protection

• Driver Signing
– Doesn’t actually protect against rootkits.

• Integrity Protection Driver
– from Pedestal Software
– Open source

• Server Lock
– From Watchguard
– Commercial software, about $1000 per server.

Integrity Protection Driver

• Is a kernel driver

• Hooks some system services to forbid loading of any
NEW module.

• Standard drivers found in the \WINNT\System32\Drivers
directory are still allowed to be loaded.

• Activates protection 20 minutes after the module has
been loaded.

• Reboot is needed to remove the IPD after that time

IPD hooks

ü ZwOpenKey/ZwCreateKey/ZwSetValueKey (protects
\HKLM\System\CurrentControlSet\Services)

ü ZwOpenSection (block \Device\PhysicalMemory)

ü ZwCreateFile/ZwOpenFile (block \Device\Harddisk*,
etc...)

ü ZwCreatLinkObject (to prevent cheating ZwOpenSection
and Zw{Create,Open}File)

ü ZwSetSystemInformation:

üSystemLoadAndCallImage

üSystemLoadImage

ü ZwOpenProcess prevent Runtime Process Infection.

IPD: Bug history

• ZwSetSystemInformation not hooked (Hoglund,
2000),

• Bypass of \Device\PhysicalMemory protection
(crazylord, 2002),

• Bad logic in restirctEnabled() (2002),
• Drivers directory protection bypass:

– with ‘subst’ (2002),
– Problem with driver’s without ImagePath field (2003),

• Raw disk access and driver file replacement
(2003),

• More problems with ZwSymbolicLinkObjects
(2003).

IPD: problems with CreateSymbolicLinkObject()

C:\spool>funWithLinks.exe
creating link: \hak1 --> \Device
creating link: \hak2 --> \Device\PhysicalMemory [failed]
creating link: \hak3 --> \
creating link: \hak4 --> [failed]
creating link: \Device\hak5 --> \Device
creating link: \Device\hak6 --> \??\GLOBALROOT

trying to open for READ|WRITE:
opening \Device\PhysicalMemory ... [failed]
opening \hak1\PhysicalMemory ... [it worked!]
opening \hak2 ... [failed]
opening \hak3\Device\PhysicalMemory ... [failed]
opening \Device\hak4\PhysicalMemory ... [failed]
opening \Device\hak5\PhysicalMemory ... [it worked!]
opening \Device\hak5\hak5\PhysicalMemory ... [it worked!]
opening \??\GLOBALROOT\Device\PhysicalMemory ... [it worked!]
opening \Device\hak6\hak1\PhysicalMemory ... [it worked!]

IPD fixes

• The last version of IPD blocks
ZwCreateSymbolicLinkObject() totally;)

• IPD shows that it is very difficult to write
good protection program for third party
company (i.e. not OS vendor)

ServerLock

• Consists of a driver module and nice GUI
configuration program.

• Similar idea to IPD – do not allow any new
module to be loaded, it hooks:
– Registry key manipulation functions,
– ZwSetSystemInformation,
– Protects \Device\PhysicalMemory

• Possibility to also protect files from changes (by
viruses for e.g.)

Problems with ServerLock

• ZwSetSystemInformation allows ‘trusted’
processes to load driver. Trusted process is
considered one, that was created from program file,
which is protects against changes. This can be
abused by DLL injection for e.g. (2003).

• This has been fixed in the new version (2003).

• Vendor refuse to provide details when calling
ZwSetSystemInformation is allowed.

Problems with ServerLock cont.

• Doesn’t hook ZwOpenSection, so RPI is
possible. Rootkits like hxdef can be
installed.

• Similar problems with accessing
\Device\PhysicalMemory through symlinks.

• This has been reported to Watchguard at the
beginning of 2003. These issues has not
been repaired yet...

Kernel Overflows

• Attacker can find a bug in one of many
kernel drivers and get into the kernel.

Protection of Windows kernel

• Although never gives 100% (vide kernel
overflows) is a very good idea.

• Something similar to securelevel from
*BSD, should be implemented on Windows.
Probably it would be best done by
Microsoft.

• We see however, that we cannot relay fully
on prevention, so lets discuss detection...

Rootkits
technology

modify execution path Change only data
structures (like
process linked list)

Service hooking/
Dll hooking.

Direct code change

„strange” function
pointers changes

Classic ST hooking

...

...

Original OS function
 to return info about
 running processes

ZwQuerySystemInfo

ZwQuerySystemInfo();
/* Remove some processes
 from returned list */
/* ... */
return

NewZwQuerySystemInfo

IDT hooking

2Eh

KiSystemService:

ST

NewKiSystemService:

...

newST

...

hooked

IDT

IDTR hooking IDTR

2Eh

IDT

2Eh

IDT

Then we make changes
here, exactly like on the
previous slide

pointers change
ST

...

newST

...
hooked

_KTHREAD

_KTHREAD

...

Process are linked in double list

• _EPROCESS.ActivePorcessLink (fu rootkit)
• _KPROCESS.ReadyListHead
• KiDispatcherReadyListHead – queues of ready thread
• other queues used by Dispatcher

fu rootkit (by fuzen_op)

• _EPROCESS.ActiveProcessLinks

• Filed not used by scheduler

• We can simply unlink process object.

• However, threads from this process must be on
some other lists (like KiDispatcherReadyListHead), to
obtain some CPU quantum form scheduler...

• We can scan this lists then and unhide hidden
processes (threads).

„Shadow” threads list

Scheduler must be
patched to use
different pointers for
thread scheduling...

So, how to detect if our kernel
has been compromised or not?

detection

We have some clear
system state to
compare with (like
dump of ST).

We can analyze only current
system, have no info about
the system when was clear.

In most cases, we should fit into 1st category.

Comparing areas of kernel
memory

• Make a copy of some kernel memory fragments
(like ST, IDT, code) when system is clear (i.e. just
after the installation)

• Regularly compare saved contents of memory
with the current one.

• Kernel memory should be accessed by means of a
kernel driver, not \Device\PhysicalMemory.

What memory area should be
monitored?

IDTCode area

SST

...

ETHREAD

IDTR

Kernel
memory

Is it enough?

• Nobody knows...

Rootkits
technology

modify execution path Change only data
structers (like
process linked list)

Service hooking/
DLL hooking.

Direct code change

„strange” function
pointers changes

• When trying to for e.g. find all processes we can
use internal lists used by scheduler.

• Possible to cheat, by modifying scheduler code to
use copy of the original structures. Original
structure is then untouched (see „shadow” threads
list concept).

• Accessing kernel data structures should be
implemented by kernel driver, not through
\Device\PhysicalMemory.

Reading kernel internal data
structures

EPA concept

• Measure the number of instructions, which
has been executed during some system
services

Step mode on IA-32

• Set TF bit in EFLAGS register

• When in step mode, CPU generates #DB
exception (Trap class) after the execution of
every instruction

• #DB exception handler is stored at IDT[1].
• TF bit is cleared when int x instruction is
used to enter the kernel mode.

...

IDT

0h

1h (#DB)

2h

2Eh (Win2000)

...

FFh

inc counter;
iret;

NewKiSystemService:
 if (current_pid ==

trace_pid)
setTFbit();

jmp KiSystemService;

KiSystemService:
 ...
 call [ebx];
 ...
 iret;

EPA: IDT hooks

Tester process & kernel driver

pfDriver.sys

pfStart();
...
pfStop();

...

PF_QURY,
PF_START,
PF_STOP,
PF_GET_COUNT,
PF_GET_TRACE

Tester process

Test example

for (int i = 0; i < N; i++) {
pfStart();

hFind = FindFirstFile(
"C:\\WINNT\\system32\\drivers",
&FindFileData);

pfStop();

FindClose(hFind);
}

We will get N samples of test, then we can make a histogram...

0

50

100

150

200

250

23
40

0
23

41
0

23
42

0
23

43
0

23
44

0
23

45
0

23
46

0
23

47
0

23
48

0
23

49
0

23
50

0
23

51
0

23
52

0
23

53
0

23
54

0
23

55
0

23
56

0
23

57
0

23
58

0
23

59
0

23
60

0
23

61
0

23
62

0
23

63
0

23
64

0
23

65
0

23
66

0
23

67
0

23
68

0
23

69
0

23
70

0
23

71
0

23
72

0
23

73
0

23
74

0
23

75
0

23
76

0
23

77
0

23
78

0
23

79
0

23
80

0

0

50

100

150

200

250

300

350

23
40

0
23

41
0

23
42

0
23

43
0

23
44

0
23

45
0

23
46

0
23

47
0

23
48

0
23

49
0

23
50

0
23

51
0

23
52

0
23

53
0

23
54

0
23

55
0

23
56

0
23

57
0

23
58

0
23

59
0

23
60

0
23

61
0

23
62

0
23

63
0

23
64

0
23

65
0

23
66

0
23

67
0

23
68

0
23

69
0

23
70

0
23

71
0

23
72

0
23

73
0

23
74

0
23

75
0

23
76

0
23

77
0

23
78

0
23

79
0

23
80

0

FindFirstFile example

Execution Path Recording

• Sometimes peek’s position changes a little
(typically less then 20 instructions)

• Is it rootkit or just false positive?

• EPR: see exactly what instructions caused the
difference!

• EPR requires deep technical knowledge from user.

• Possibly ‘diff –c’ can be replaced by some more
sophisticated program.

Comparison of two traces:

*** RegEnumKey-clear.trace Sun Jun 29 03:49:21 2003
--- RegEnumKey-current.trace Sun Jun 29 03:49:21 2003

*** 273,278 ****
--- 273,281 ----
 0x80416f60
 0x80416f63
 0x80416f65
+ 0x80416f67
+ 0x80416f6a
+ 0x80416f6d
 0x80416f74
 0x80416f76
 0x80416f77

Extra instructions, which caused
false positive.

Attacks against EPA

Attacks against
specific tool,
specific version,
specific binary.

More general attacks
against EPA concept.

Attack1: IDT1 hook

hook_idt1();

unhook_idt1();

...

IDT

0h

1h (#DB)

2h

FFh

inc counter;
iret;

iret;

rootkit’s
extra code

IDT1 protection

...

IDT

0h

1h (#DB)

2h

FFh

inc counter;
iret;

jmp handler2

handler2:

handler1:

(real handler2 is much more complicated)

Write
protection

Read&Write
protection

Attack2: TF check

rootkit’s
extra code

if (TF=1)
skip rootkit code;

Attack3: disable step mode

TFß0

TFß1

rootkit’s
extra code

Attack 2&3 defense

...

IDT

0h

1h (#DB)

2h

FFh

if (nextInstr == ‘popf’) {
 setTFbit in [esp]
}

if (prevInstr == ‘pushf’) {
 clearTFbit in [esp]
}

inc counter;
iret;

Note: there are a few instructions similar to popf/pushf, which can access EFLAGS
register. They are specified in IA32 manual.

Attack4: Smart TF check

rootkit’s
extra code

TFß1
if (TF=0) skip rootkit code;

Attack 2,3,4 defense

...

IDT

0h

1h (#DB)

2h

FFh

if (nextInstr == ‘popf’) {
 tfbit = getTFbit from [esp];
 setTFbit in [esp];
}

if (prevInstr == ‘pushf’) {
 setTFbit in [esp] to tfbit;
}
inc counter;
iret;

Note: there are a few instructions similar to popf/pushf, which can access EFLAGS
register. They are specified in IA32 manual.

Init: tfbit ß 0;

Attacks against specific program

• Hard to defend

• Hard to rootkit author, when more then one
tool, more then one version exists.

• Defense: polymorphic code generation for
every machine (during installation phase).

Practical Detection Toolkit
...should combine:
• File & Registry integrity checker
• Kernel memory integrity checker

– Code
– IDT, IDTR
– ST, pointers to ST

• kernel structures reader
– Processes/Threads lists
– ?

• EPA

