FATKit: Detecting Malicious Library Injection and
Upping the “Anti”

AAron Walters
AT® Forensic Research
Washington, DC, USA
{fatkit} @4T®.net

Abstract

In this white paper, we discuss how the Forensic Analysis ToolKit (FATKit) can facilitate the process of
enumerating suspicious artifacts manifested as a result of remote library injection. We discuss a humber
of techniques that have proven effective at elucidating artifacts that are by-products of advanced exploita-
tion methods frequently characterized as anti-forensic or stealthy. One significant differentiator from the
majority of previous work is the fact that we do not rely on the integrity of the potentially compromised
operating system, but instead perform our analysis offline on a trusted capture of volatile memory (RAM)
[10, 22, 7]*. While many of the previously published techniques have focused on detecting attacks in
real time, we are focused on facilitating the forensic analyst's ability to extract memory-resident evi-
dence from the information system under investigation.

1 FATKit: Forensic Analysis ToolKit

The Forensic Analysis ToolKit (FATKIt) is a cross-platform, modular, and extensible digital investigation
framework for analyzing volatile system memory [20, 19]. This modularity was designed to support multiple
operating systems, but also with the goal of being able to support various hardware architectures as well.
For example, we currently have profiles for Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, and Linux. The framework is intended for advanced researchers, law enforcement professionals, and
forensics analysts who are interested in extracting and interpreting relevant information in the wake of a
crime or incident. Unlike previous work in this area, the FATKIit project is working to combine the latest
research in volatile memory forensics, memory informatics, static analysis, and multi-relational data mining.
FATKIit offers a unique ability to automatically correlate information across multiple data stores (packet
captures, volatile memory, filesystem, etc.), which facilitates an ability to enumerate suspicious artifacts on
a system. Recently, the offensive communities have begun to focus time and effort on “anti-forensics” and
stealthy advanced exploitation techniques. Many of these techniques leverage the complexities associated
with physical memory analysis and rely on the fact that volatile memory is often an opague component
of information systems. These techniques have also exploited the closed nature of investigatory tools that
have pigeon-holed digital forensics examiners. Unlike previous work, which introduced FATKIit's unique
visualization capabilities [19], in this white paper we will demonstrate FATKit's powerful ability to support
analysis modules and the ease of building those modules using supporting tools and APIs. This will be the
first paper in a series addressing anti-forensic and stealthy exploitation techniques.

tuntil these mechanism are uniformally adopted forensic examiners must often leverage a potentially compromised operating
system to create the memory image [30]

2 Overview: Remote Library Injection

Many operating systems provide mechanisms for dynamic linking, which allows a program to load and
unload routines at runtime. Microsoft Windows implements this functionality using shared objects called
Dynamic-Link Libraries (DLLs) [18]. DLLs are dynamically loadable objects that are mapped into the ad-
dress space of a running process. While this has proven to be a very important feature of modern operating
systems, attackers have also developed methods to exploit dynamic linking in order to reduce their obtru-
siveness in the allocation of system resources and thwart conventional forms of filesystem forensic analysis.
A remote library injection attack occurs when an adversary, typically after taking advantage of a remotely
exploitable vulnerability, injects a DLL into the address space of an active process [15]. This technique has
commonly been labeled as “anti-forensic,” since data is not written to any non-volatile storage and because
any indication of the injected DLL would typically be lost during common incident response procedures
[14].

In this paper, we will demonstrate how FATKIit can be used to implement an analysis module capable
of enumerating suspicious data found in volatile memory. Specifically, FATKit will be used to search for
in-memory artifacts left as a result of the sophisticated remote library injection techniques implemented
by Miller and Turkulainen for the Metasploit Framework [17]. The Metasploit Meterpreter creates an
extensible command interpreter server inside of an exploited process on a remote machine. One reason
the aforementioned techniques are particularly sophisticated relates to the fact that a number of actions are
taken to reduce their obtrusiveness on the system. For example, efforts are made to only temporarily hook
system APIs and then undo the changes until the functionality is needed again. While other techniques can
be coupled with remote library injection to make them even stealthier (e.g., object manipulation attacks [12,
13]), the purpose of this paper is to demonstrate how FATKIit can augment the forensic analyst’s ability to
elucidate suspicious artifacts on a system under investigation. This will include artifacts that are intrinsic to
particular attack techniques, those that are simply by-products of specific implementations, and those that
are needed to support advanced functionality (e.g., Meterpreter). Regardless of their origin, all three types
of artifacts are important, as they have the potential to draw the suspicion of the analyst, focus his or her
attention, and possibly lead to the discovery of other forensic evidence.

3 Experimental Setup and Evidence Acquisition

The target system used for this discussion was a VMWare Workstation 5.5 virtual machine with 256 MB
of RAM. The demonstrated analysis techniques are not dependent on this configuration and work simi-
larly on images taken from machines running operating systems natively using a number of different ac-
quisition mechanisms. The vulnerable machine was running an unpatched version of Microsoft Windows
2000. In this scenario, the attacking machine was running the latest version of the Metasploit Framework
(framework-3.0-alpha-r3) [17]. The targeted Windows 2000 machine was compromised by exploiting the
MS03.026 vulnerability [21] in Microsoft RPC DCOM. This was the exploit vector used for delivering the
reverse _tcp Meterpreter payload. Once the machine was exploited and the Meterpreter server had been
installed, volatile memory was captured from the virtual machine. The image of volatile memory collected
in this step will be the basis for the forthcoming discussion and analysis.

4 Utilizing FATKit for Analysis

Once the compromised image had been successfully acquired, it was loaded into the FATKIit framework
along with the profile for Windows 2000. These profiles are automatically generated offline and contain

important meta-information about the system under investigation including relevant symbols, data struc-
tures, object signatures, and hashes of shared libraries and executables. In previous work involving Linux,
we demonstrated the ability of the FATKit framework to enumerate lists of kernel objects based on point-
ers found in the symbol table [19]. In this example, we begin by leveraging a complementary technique
— performing a linear scan of the physical address space to allow our accumulators to find objects of in-
terest (e.g., devices, drives, processes, threads, memory-mapped files). While others have used similar
techniques [1, 4, 26], the main difference is that our signatures for these objects are automatically developed
using advanced techniques in memory informatics that are based on mutation rates developed through a con-
sensus technique for ungapped data streams. Our work on memory informatics was inspired by the recent
work in protocol informatics [3]. We also have the ability to automatically perform these scans across ad-
dress spaces. Accumulators are used to return the set of Python objects that describe the low-level instances
in the kernel’'s physical address space. Each of these potential kernel objects is then evaluated with respect
to their semantic integrity [23] in relation to other objects and the operating system’s semantics in order to
determine their likelihood of being a valid object. In this example, we will focus primarily on process and
thread objects, as they are the most relevant for the detecting the remote library injection technique under
consideration.

In the remainder of this section, we will discuss the important data structures and the relationships be-
tween those data structures of which we will make extensive use. In order to facilitate this discussion, we
have included pseudo-code which demonstrates how DLLs can be enumerated using the FATKit interface
in Figure 1 and Figure 2. We have also tried to illustrate the pertinent relationships in Figure 3. Much of the
utilized information was extracted from numerous sources [25, 29]. Processes in Windows are represented
using an executive process blocEPROCESS) structure. TheseEPROCESS structures, which reside
in kernel address space, contain information about processes on the system. In this discussion we will fo-
cus on two important members of this structure —Flob and thePeh The first field of the EPROCESS
structure is thePcb (process control block). Thd’cb is a kernel process block of typ&PROCESS
and contains information related to scheduling. From Beb substructure, we find théirectoryTable-
Basemember, which is a pointer to the physical address of the process page directory. Using the address
of the process page directory, we create a new Flat-paged virtual address space for each process using our
create _address _space() function. Once the address space is created, we can interact with the un-
derlying physical memory completely within the context of the emulated address space of each individual
process. This also allows us to differentiate the pages in physical memory associated with each virtual ad-
dress space. The other important member of BRROCESS structure is thePeh which is a pointer to
an object of typePEB, the process environment block. This object is typically stored in user address space
since it needs to be modified from user space by such things as DLLsPERe holds information about
the current state of the process.

Using the previously instantiated address space for the current process, wewusgthe function to
perform a virtual to physical address translation to determine if the pointer value is still in memory and, if so,
its offset in the physical address space. If the address is successfully translatedcreatese_object()
to create aPEB object in the process’ address space. TREB also has two fields which are extremely
useful in detecting remote library injections. The first fieldiisageBaseAddreswhich is a pointer to the
virtual address of the memory-mapped PE (Portable Executable) image of the program. PE is the file format
used by the Windows operating system for representing such things as executables, DLLs, device drivers,
etc. We will put off the discussion of the processing performed by the PE module until we discuss extracting
DLLs.

Another important field id_dr, which is a pointer to the virtual address location of ti=EB_LDR _DATA
object for this process. ThePEB_LDR _DATA maintains information filled-in by the loader and is up-
dated when DLLs are loaded or unloaded. Once a check is performed to make sudy thddress is still
paged increate _object() is once again employed to instantiate the object at this address within the

3

def ListModules(analyzer):
The analyzer is the central analysis engine. It
maps a profile to an image.
profile = analyzer.getprofile(profile)
Access the linear physical address space
phys = analyzer.getaddressspace ("Physical”)
Perform a linear scan for process objects
pobjs=linearsearch (phys, profile.gesignature (.EPROCESS"))
Validate the semantic integrity of those objects
vobjs=validateprocesses (pobjs)
lterate through the validated objects
for x in vobjs:
Access the Directory Table Base associated with
this process
directorytablebase=x.member(’'Pcb’). member(’'DirectoryTableBase’)
directorytableval=directorytablebase .getember (0). value ()
Reconstruct the processes virtual address space
analyzer.createaddressspace ('process’, ' Flatpaged’,\
directorytableval)
proca = analyzer.getddressspace('process’)
Perform a virtual to physical address translation
pebp = proca.vtop (x.member('Peb’).value ())
Check if virtual page is memory resident
if pebp != PAGEOUT:
Instantiate object in the process’ address space
peb = profile.createobject(['.PEB’], proca,\
x.member('Peb’). value ())
Validate that executable is memory mapped
imgp=proca.vtop (peb.member(’'ImageBaseAddress’). value ())
if imgp != PAGEDOUT:
Process the PE Image
validate_pe (imgp)
Check if loader information is memory resident
peb_ldr_p=proca.vtop (peb.member(’'Ldr’).value ())
if peb.ldr_.p != PAGEDOUT:
Instantiate object
Idr_obj = profile.createobject ([-PEBLDR.DATA’'], proca, \
peb.member(’'Ldr’). value ())
module.base = Idcrobj.member(’'InLoadOrderModulelList’). member(’Flink’). value ()
init_module = profile.createobject (['.LDR.MODULE'], proca, \
modulebase)
list_.do_check (initmodule , ['InLoadOrderModuleList’\
"Flink’'], ProcessModule , modulébase)

© 0 N O OB~ WN P

B A DN DD W W WWWWWWWWNNNNNRNRNRNNDNDEREERRRPRPR B P PP
B WONRPOO©®®®MNOOA P ®NRPL O ®©®®®NO®UBNWNERPRPRO®©®NO®UONMWNR O

Figure 1: lllustrative example of listing loaded DLLs (Python).

virtual address space. From this object, we have access to three sets of linked lists that relate three differ-
ent orderings of the DLLs that are loaded in this process’ address space. Each of these doubly-linked lists
(InLoadOrderModuleList, InMemoryOrderModuleList, InInitializationOrderModuleList) are composed of
pointers to objects of typeLDR _MODULE . We iterate through these embedded list pointers using meth-
ods designed to facilitate walking lists. Once eatibR _MODULE object has been instantiated, we can
use the information found in these objects to look for suspicious artifacts associated with the DLLs loaded
in each of the process.

While there are a number of members diDR _MODULE that will be discussed in the following
section, we will focus on th@aseAddressAs with the ImageBaseAddredsund in thePEB, BaseAddress
is a pointer to the virtual address of the memory mapped PE (Portable Executable) image of the program.
Both of these objects are processed using the FATKit PE module which is used for such things as extracting
the memory mapped files, providing accumulators for important data, evaluating the semantic integrity of
the PE data structures, and creating a Relative Virtual Address Space (RVAS) for each PE image. A Relative

def ProcessModule (x):

proca = analyzer.getddressspace(’'process’)

Access members of the obect

str=unicodestring (x. member(’'FullDIIName "))

baseaddr = x.member(’'BaseAddress’).value ()

timestamp = x.member(’'TimeDateStamp'). value ()

loadcnt = x.member(’LoadCount’). value ()

Output module info

print "Name:.%s_.BaseAddress.(0x%08x).TimeDateStamp: "\

" (0x%08x).LoadCount%d”%(str , baseaddr ,timestamp , loadcnt)

Validate DLL PE

dllimg=proca.vtop(baseaddr)

if dllimg != PAGEDOUT:

validate.pe (baseaddr)

Perform a linear scan for module objects in process address space

17 pmobjs=linearsearch (proca, profile.gesignature (.LDR.MODULE"))

© 0 N O b~ WN P

I i T e
o UM WN PR O

Figure 2: A function to print information about loaded DLLs called from Figure 1.

——

Kernal Address Space ! User Address Space
i
PE
EXE
LDR_MODULE
[
: — PE
KPROCESS EPROCESS L PEB
N PEB_LDR_DATA | BN
BaseAddress ——
DirectoryTableBase ImageBaseAddress [
InLoadOrderModuleList
Ldr FullDlIName DLL
InMemoryOrderModuleList
ProcessParameters [
InlnitializeOrderModuleList
LoadCount

TimeDateStamp [—

ImagePathName

RTL_USER_PROCESS_PARAMETERS

,,

Figure 3: Pertinent EPROCESS Memory Structures and Relationships

Virtual Address (RVA) allows address pointers to be specified despite the fact that a PE file can be loaded
arbitrarily within the processes address space. Thus, an RVA is typically an offset from the base address of
where the PE is loaded in memory.

The information used to create the following modules was found in [24]. Figure 4 has been added to
facilitate the discussion about the PE relationships. The PE module begins by using the base address as the
frame of reference. Thereate _object() = method is used to instantiate thtMAGE _DOS HEADER
object within the virtual address space of the process. From this object, the module extraetaihew
member, which provides the offset of the PE header from the base address. Using this address, the module
instantiates a new object of type MAGE NT_HEADER . The FileHeader member of this object is
a structure of type IMAGE _FILE HEADER, which contains important general information about the
file. This includes theNumberOfSectionamember, which indicates the number of sections that can be
found in the section table. Another important memberlMAGE _NT_HEADER is the OptionalHeader
member, which is a structure of typdMAGE _OPTIONAL _HEADER. Using this object, we are able to
find the DataDirectorymember of IMAGE _OPTIONAL HEADER, which is an array of structures of

Portable Executable (PE)

IMAGE_FILE_HEADER IMAGE_DOS_HEADER __--"~ - IMAGE_DOS_HEADER IMAGE_SECTION_HEADER
2 P
-

IMAGE_NT_HEADER JEPRE

Name

\ Phe ’ B
NumberOfSymbols \ e_lfanew /" /| IMAGE_SECTION_HEADER
. ,

VirtualAddress

SizeOfRawData

IMAGE_SECTION_HEADER

\ /
IMAGE_OPTIONAL_HEADER ‘. IMAGE_NT_HEADER /
\

text

Signature

DataDirectory [N FileHeader

OptionalHeader .data

| ‘
! IMAGE_DATA_DIRECTORY
I

[
! other sections
Virtual Address
Size I

Figure 4: Pertinent PE Structures and Relationships

type IMAGE _DATA DIRECTORY that indexes important parts of the executable. This is accomplished
with the two members of IMAGE _DATA _DIRECTORY , VirtualAddressandSize The VirtualAddress
member is the RVA of the data and tB&ze as expected, relates the amount of relevant data at that location.
We will primarily focus on two such directories, thHexport table and the Import table.

The export section is used for making symbols (functions, variables) available within the the processes
address space that can be dynamically imported. Figure 5 provides an illustration of the important export
relationships and will be used to facilitate this discussion. Using the RVA found invilneial Address
member of theExport table we find the IMAGE _.EXPORT _DIRECTORY structure. This is the first
element in the array of IMAGE _DATA DIRECTORY structures. TheAddressOfFunctionmnember
relates to an RVA for the Export Address Table (EAT). TAddressOfNamesnember corresponds to the
RVA for the Export Name Table (ENT) and th&ddressOfNameOrdinatelates to the RVA for the Export
Ordinal Table (EOT). The Export Address Table is composed of an array of RVAs, where each RVA points
to the location of the exported symbol. The Export Name Table, on the other hand, is also an array of RVAs,
but these are the addresses of the lexicographically sorted names of the symbols. Finally, the Export Ordinal
Table is an array of 2-byte values used to index the EAT. Each elements in the EOT matches the element
at that index in the EAT. The EOT provides the mapping between the name of the exported symbol and its
ordinal index within the EAT. By traversing these tables, we are able to enumerate the symbols exported by
this PE file.

On the other hand, the Import table relates to those symbols which are dynamically imported by this PE
file. Figure 6 illustrates important Import table relationships and will be used to augment the discussion.
Using the Virtual Addressmember of the second element of the array BIAGE _DATA _DIRECTORY
structures we find the RVA for an array of MAGE _IMPORT _DESCRIPTOR structures. Each element
of this array corresponds to the PE file from which the current PE file imports symbols. The array is delim-
ited by an element that is zeroed out. Thes®IAGE _IMPORT _-DESCRIPTOR elements each contain
pointers to both the Import Name Table (INT) and the Import Address Table (IAT) QtfiginalFirstThunk
member contains the RVA of the INT and thiérstThunk member contains the RVA of the IAT. There is
also aNamemember, which is the name of the DLL that contains the symbols being imported. The IAT and
INT are both composed arrays of objects typAGE _-THUNK _DATA . Each_IMAGE - THUNK _DATA
corresponds to an imported symbol. The in-memory manifestation of the IAT contains the actual addresses

Portable Executable (PE)

AddressOfFfinctipns

AddressOfNarpes

IMAGE_EXPORT_DIRECTORY [~ AddressOfOrdinals

AddressOfFunctions Export Address Table (EAT) S —I_I
AddressOfNames Export Name Table (ENT) I
AddressOfOrdinals Export Ordinal Table (EOT) \\ . ORDINAL

N AN
N
N
N
N
N

Figure 5: Exports Section

of the imported functions within thé=unction member of the IMAGE _THUNK _DATA . The INT ei-

ther contains the ordinal for the imported API in the EOT of the exporting DLL or an RVA ttMa

AGE _IMPORT _BY NAME structure. ThelMAGE _IMPORT _BY_NAME structure contains two mem-

bers. TheHint member corresponds to a suggested ordinal into the exporting DLLs EOT ardatime

member contains the name of the symbol to be imported. Once we have parsed these data structures, we
have the symbols imported by this DLL and where they are mapped in the virtual address space of the
process.

As previously alluded to, another important aspect of the PE image is the Section Table. This table im-
mediately follows the lastIMAGE _DATA DIRECTORY . The section table is composed of an array of
IMAGE _SECTION_HEADER objects which provides important meta-information about the sections and
their locations in memory. We previously found the size of this table that was stored NuthberOfSec-
tionsmember of IMAGE _FILE HEADER . The information stored in thtMAGE _SECTION _HEADER
elements is very important for verifying the integrity of the information and rebuilding the sections in mem-
ory. For example, we can extract thtext section from this information and it gives us a recipe for
rebuilding it in the RVAS. We can also verify the integrity of code sections.

Once this is finished, our accumulator modules have now given us all the memory objects (processes,
threads, etc.) and DLLs associated with each process. It has also found all of the verified sedioms of
that are mapped into the address space. Also included are symbols that are exported by the DLLs and the
address of all the symbols that are imported.

5 Suspicious Artifacts

Using these objects and the relationships between these objects, we are able to perform a number of checks to
elucidate suspicious artifacts. Many of the checks we will leverage include advanced techniques in semantic
integrity evaluation [23], outlier detection for evidence identification [8], cross view diff-based approaches

[2, 28, 9], and validating static data [22]. The following set of checks is not an exhaustive list, but is only a

Portable Executable (PE)

OriginalFirstThunk
FirstThunk
IMAGE_IMPORT_DESCRIPTOR IMAGE_THUNK_DATA

L T - - .
OriginalFirstThunk 1

RVA
IMAGE_IMPORT_DESCRIPTOR ’_I%
1 L / T

Name T
FirstThunk

ORDINAL

Import Name Table (INT)

Import Address Table (IAT) N AR

Virtual Address

N ~
N
N ~
N N
N N
N N
N
N
~
N

IMAGE_IMPORT_BY_NAME

Hint

IMAGE_IMPORT_BY_NAME

Name em = e e

Figure 6: Imports Section

representative subset of the types of checks that are possible.

One set of checks we perform relates to correlating what is in memory with what is collected during the
filesystem acquisition. Thus for each DR _MODULE we look to see if there is actually a DLL in the
filesystem found at the path and name stored in EiglDIIName field. In the case of our compromised
system, there are twaLDR _MODULE objects (metsrv.dll, ext581787.dll) in the svchost.exe address
space that cannot be found on disk at their specified locations in {MgIRNT \ system32 directory. Thus
these two _LDR _MODULES are considered suspicious artifacts that deserve further investigation. We
also compare the list of modules loaded by each process in the compromised image with those typically
loaded by the respective programs as found in the Windows 2000 profile, once again drawing attention to
the aforementioned artifacts.

Another set of checks that is performed relates to correlating the in-memory image of the DLL's PE with
the image stored on disk. ThBaseAddresfeld of the LDR _MODULE object is a pointer to the virtual
address of the memory mapped PE image associated with this DLL. Previous research has demonstrated the
ability to detect black listed modules by hashing the first 1024 bytes of this field [31]. Unfortunately, the
first 1024 bytes only covers part of the memory-mapped PE header. Alternatively, usiBagef\ddress
we are able to parse the in-memory image of the DLL and reassemble the sections of the PE. This enables
us to compare the hashes of static sections of the PE. For example, we can actually rebuild the text section
of the file and compare the hash against the metsrv.dll used by metasploit.

DLL SHA-1 (.text)
metsrv.dll (framework-3.0-alpha-r3) 0c3e67e1c02da875df13a084af0b4f29122e6d53

Since blacklisting has its obvious limitations, more importantly we hash the static sections of all the PE
images and compare those with the values stored in the Windows 2000 profile and those generated from the
filesystem information. As a result, we attempt to guarantee that every DLL loaded in memory must match
the DLL found on disk. Metasploit's remote library injection technique actually undoes its changes so that

8

the code sections will not exhibit any changes unless the image is taken during the loading of a module.
Special processing is also taken to handle self-modifying components [27].

Suspicious DLLs (BaseAddress vs. TimeDataStamp)

1.1e+09

1.05e+09

TimeDateStamp

1e+09 B

9.5e+08

1 1 1 1
0 5e+08 1e+09 1.5e+09 2e+09
BaseAddress

Figure 7: Anomalous Artifacts

We also look for anomalies among the set of DLLs loaded in the address space of each process. For
example, we can check for set equality among the three doubly linked lists. We also correlate across the
set of LDR_MODULE structures for anomalous members. This includes looking for inconsistent values
for the BaseAddressand TimeDateStampacross the set of LDR _MODULE objects. For example, the
graph in Figure 7 is a scatter-plot of the these values for the DLLs loaded into svchost.exe address space.
The “X” data points in the lower right-hand corner represent the valid DLLs. The single “X” data point in
the lower left corner represents the executable image. On the other hand, the “+” data points in the upper
left corner represent the two anomalous DLLs loaded by Metasploit. While many of these features may not
be intrinsic to the attack, they are used to emphasize that the attacker must make a concerted effort to avoid
attracting suspicion.

6 Beyond the Basics

Our remote library injection detection module attempts to go beyond simply detecting the implementation
artifacts of Metasploit. Thus we also take into consideration techniques that can be used to make remote
library injection more stealthy. For example, let us assume that the attacker couples the remote library
injection with an object manipulation technique similar to that presented in NTlllusion [13], which allows
the attacker to hide the DLLs that have been injected into a process.

As seen in Figure 8, and in a manner similar to DKOM attacks, this is accomplished by manipulating the
pointers to remove theLDR _MODULE object from the doubly-linked lists. Once the DR_MODULE
is removed, none of the previous detection methods will be useful since the aforementioned enumeration
techniques will no longer find the object and thus have nothing to compare against.

In order to address these methods, the FATKIit remote library injection model employs a number of
techniques. First, the detection module performs a linear scan of the process’ address space looking for

LDR_MODULE LDR_MODULE LDR_MODULE

LIST_ENTRY LIST_ENTRY LIST_ENTRY
FLINK FLINK FLINK
BLINK BLINK BLINK

Figure 8: Direct User Object Manipulation

unlinked modules using a signature developed from memory informatics. Next, we assume the attacker
has gone even a step further and zeroed out memory associated with the susgi®duMODULE , as
suggested in NTllusion [13]. In order to address this, the detection module leverages the PE module. As
previously mentioned, we have already extracted locations afdlke sections associated with each PE

and evaluated the integrity of those sections.

FATKit's ability to parse the PE headers associated with the image of the program and correlate import
address tables with the address spaces of the DLLs that are represert@RhWMODULE objects in the
embedded doubly-linked list make the injected library detectable. Thus, similar to [22, 27], we are able to
verify the integrity of the trusted code sections in memory, locate any hooks [6] that do not point to these
sections, and validate the semantic integrity of both the import and export tables [23].

One may now ask, “what if the attacker has undone any of these hooks,” since they are now able to
execute arbitrary code on the compromised machine. FATKIit also has modules to detect this activity by
tracing both the kernel and user-space stacks of the running threads and correlating the information stored
on the stack with verified code sections. In this example, by tracing the stacks of the threads, it is possible
to find the threads that are executing code found in the injected libraries. In the next white paper, we will
discuss the details of finding this information and demonstrate how to map open ports to process object
handles.

7 Discussion

The purpose of this white paper was to demonstrate how an analyst can leverage FATKit to elucidate artifacts
of techniques that have been colloquially seen as “anti-forensic”. The paper was not intended to present a
complete detection algorithm, but rather to demonstrate the types of things that are possible and how FATKit
facilitates this process. Unlike the other work being used to perform real time detection, we do not depend
on the runtime integrity of the operating system. As a result, many of the subversion techniques used to
defeat these tools do not apply. Furthermore, we are only concerned with detection as a means of finding
suspicious artifacts. The goal of the FATKIit project is to find as much evidence as possible from volatile
memory once an information system is believed to have been compromised.

Note: As previously mentioned, some of the artifacts identified earlier in the whitepaper are not intrinsic
to performing remote library injection but are merely suspicious artifacts of the implementation that would
draw an analysts attention. For example, a Meterpreter stub could be written which maliciously modifies
some of the memory resident objectsPR_MODULE, PE headers, etc) to scrub them of their suspicious
data [16]. Thus, reducing the number or clustering of suspicious artifacts.

10

8 Acknowledgments

The author would like to thank those who contributed and reviewed this white paper. The FATKit project
would also like to thank the Metasploit project for keeping things interesting and especially thank HD for
his valuable comments. We would also like to thank MISBIS?, Komoku, monkeys, and the BAD boys!
Finally, we would like to thank Harlan Carvey [11], Andreas Schuster [1], and Mariusz Burdach [5] for
doing interesting work and forcing us to write some of this stuff up.

References

[1] Andreas Schuster. Computer Forensics Blog, June 2006. Available at:
http://computer.forensikblog.de/en/.

[2] Doug Beck, Binh Vo, and Chad Verbowski. Detecting stealth software with strider ghostbuster. In
DSN '05: Proceedings of the 2005 International Conference on Dependable Systems and Networks
(DSN'05) pages 368-377, Washington, DC, USA, 2005. IEEE Computer Society.

[3] Marshall Bedoe. The Protocol Informatics Project, June 2006. Available at:
www.baselineresearch.net/Pl/.

[4] bugcheck. GrepExec: Grepping Executive Objects from Pool Memory, June 2006. Available at:
http://www.uninformed.org/?v=4&a=2&t=sumry.

[5] Mariusz Burdach. Windows Memory Forensic Toolkit (WMFT) 2006. Available at:
http://forensic.seccure.net/.

[6] James Butler. VICE- Catch the hookers! Info at: www.blackhat.com/presentations/bh-usa-04/bh-us-
04-butler/bh-us-04-butler.pdf.

[7] Brian D. Carrier and Joe Grand. A Hardware-Based Memory Aquisition Procedure for Digital Inves-
tigations.Journal of Digital Investigationsl(1), 2004.

[8] Brian D. Carrier and Eugene H. Spafford. Automated Digital Evidence Target Definition Using Outlier
Analysis and Existing Evidence. IRroceedings of the 2005 Digital Forensic Research Workshop
(DFRWS) 2005.

[9] Bryce Cogswell and Mark Russinovich. RootkitRevealer, February 2006. Available at:
http://www.sysinternals.com/Utilities/RootkitRevealer.html.

[10] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Architecture for Intru-
sion Detection. Irifhe 10th Annual Symposium on Network and Distributed System Security (NDSS)
San Diego, CA, February 2003.

[11] Harlan Carvey. Windows Incident Response, June 2006. Available at: http://windowsir.blogspot.com.

[12] Greg Hoglund and Jamie ButleRootkits: Subverting the Windows Kernehddison-Wesley, July
2005.

[13] Kdm. NTHlusion: A portable Win32 userland rootkit, July 2004. Available at:
http://www.phrack.org/show.php?p=62&a=12.

[14] Vincent Liu. Metasploit Anti-Forensic Investigation Arsenal (MAFIA), July 2006. Available at:
http://www.metasploit.com/projects/antiforensics/.

11

[15] Matt Miller and Jarkko Turkulainen. Remote Library Injection, June 2006. Available at:
www.nologin.org/Downloads/Papers/remote-library-injection.pdf.

[16] H D Moore. Personal Communication.
[17] H D Moore and Skape. Metasploit Project, June 2006. Available at: http://www.metasploit.com.

[18] MSDN Library. Dynamic-link libraries, June 2006. http://msdn.microsoft.com/library/default.asp?url=/library/e
us/dllproc/base/dynamiink _libraries.asp.

[19] Nick Petroni and AAron Walters. FATKit: A Framework for the Extraction and Analysis of Digital
Forensic Data from Volatile System Memory, February 2006. Under Submisssion.

[20] Nick Petroni and AAron Walters. Forensic Analysis Toolkit (FATKit), June 2006. Available at:
www.4tphi.net/fatkit.

[21] The Last Stage of Delirium Research Group. Microsoft Windows RPC DCOM Interface Overflow.
Info at: http://www.osvdb.org/2100.

[22] Nick L Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot —a Coprocessor-based
Kernel Runtime Integrity Monitor. 143th USENIX Security Symposiu&an Diego, CA, August 2004.

[23] Nick L Petroni, Timothy Fraser, AAron Walters, and William A. Arbaugh. An Architecture for
Specification-Based Detection of Semantic Integrity Violations in Kernel Dynamic Datal5thn
USENIX Security Symposiyivancouver, B.C., Canada, August 2006.

[24] Matt Pietrek. An In-Depth Look into the Win32 Portable Executable File Format, Feruary 2002.
Available at: http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx.

[25] Mark E. Russinovich and David A. Solomohklicrosoft Windows InternalsMicrosoft Press, 2005.

[26] Joanna Rutkowska. mMmodGREPER, June 2005. Available at:
http://invisiblethings.org/tools/modGREPERY/.

[27] Joanna Rutkowska. System Virginity Verifier, 2005. Available at: http://invisiblethings.org/tools/.

[28] Joanna Rutkowska. Thoughts about Cross-View based Rootkit Detection, June 2005. Available at:
http://www.invisiblethings.org/papers/crossvigstectionthoughts.pdf.

[29] Sven B. Schreibetyndocumented Windows 2000 Secrétddison Wesley Professional, 2001.
[30] Andreas Schuster. Personal Communication.

[31] Tobias Kilein. Memory Parser (MMP), June 2006. Available at:
www.trapkit.de/research/forensic/mmp.

12

