
1

CS414: Operating Systems

Agenda

•Last time (Sept-14 7:30pm-8:45 / Sept-15 3:00-4:15p m)
�Processes/Threads (chpt 4 + 5)

•This time (Tues Sept 19)
�Threads (chpt 5)
�CPU scheduling (chpt 6)

•Next time (Thurs Sept 21)
�CPU sched (chpt 6)
�Intro Synchronization (chpt 7)

•Extra class meeting this week (Thurs/Friday)!

•PA#2 due Thurs Sept 21 11am

CS414: Operating Systems

Before we start

•Windows executive can sometimes service the request
without going to the particular subsystem (e.g., Wi ndows
“ReadFile()”)

•TA office hours (all in 002a):
�Wittawat: Wed 6-8pm
�Dhruv: Thurs 7-9pm
�Ray: Mon 5-7pm 002a

CS414: Operating Systems

Before we start: PA#2

•An critical skill: PATTERN MATCHING!
•What should happen when I execute “unhide” twice in a
row?

•NOTE: try “ebp-8” as necessary
•“GetProcAddress” of NtGetCurrentProcessorNumber in
ntdll.dll ???? What’s up with that????

•Part-2: Q2: step 2.2.6: the output could be “nothin g”.

CS414: Operating Systems

From last time: More Complicated
int main() {
char prgname[1024];
pid_t pid;
int status;

if (fgets(prgname, 1024, stdin) == NULL) {
printf ("Did not read program name. Aborting!\n");
exit(1);

}
prgname[strlen(prgname)-1]=0;

if ((pid = fork ()) == -1) {
perror("fork");
exit(1);

}
if (pid == 0) {

execlp(prgname,prgname,0);
printf("%d I did not find program %s\n", getpid(), p rgname);
exit (1);

} else {
waitpid(pid, &status, 0);
if (status == 0) printf ("Program %s finished!\n", p rgname);

}
return 0;

}

The main Stages Windows follows The main Stages Windows follows
to create a processto create a process

Open EXE and
create selection

object

Create NT
process object

Create NT
thread object

Notify Windows
subsystem

Set up for new
process and

thread

Start execution
of the initial

thread

Return to caller

Final
process/image

initialization

Start execution
at entry point to

image

Creating process

Windows subsystem

New process

CS414: Operating Systems

Context Switch

• To run a process, the OS loads the values of the hardware registers
(PC, SP, other registers) from the values stored in that process' PCB

• As the program executes, the CPU registers changes values (PC,
SP)

• When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new process

• Context-switching is overhead ; the system does no useful work
while switching

• The duration of a context switch is dependent on hardware
• Typically, time sharing OS performs 100 to 1000 con text switches
per second

•Picture on next slide….

2

CS414: Operating Systems

Context Switch

CS414: Operating Systems

Threads

•“Original” Process: address space and (single) flow of execution
• Thread

�we must separate address space (process or task) and flow of execution
(thread or lightweight process, LWP)

•Motivation:
�Context switch between cooperating processes is HUGE (reestablishing
address space); context switch between cooperating threads is cheap

� fork(…) of cooperating process is expensive; spawn of thread is cheap
�programming is easier(?)

traditional UNIX embedded
systems Windows, Solaris (POSIX)

CS414: Operating Systems

Threads and Address Space

stacks

gigabyte virtual
address space

files, I/O

PC
Registers

TCB1

PC
Registers

TCB2
PC

Registers

TCB3

CS414: Operating Systems

Kernel Threads

•An improvement over only processes
•Creation/Switching still requires trapping to the k ernel
(system call)

•Thread data structure resides within the kernel:
�Thread Control Block (TCB) (execution state and scheduling info), so
more complexity for the kernel

• Only one scheduling policy per system
• OS (still) does not trust the user, so there must b e a lot of
checking on kernel calls

CS414: Operating Systems

User-level Threads

• Faster than kernel-level threads
�In what sense?

• Managed by run-time system in user-space (no kernel
calls)

• Creation, switching, and synchronizing between thre ad
calls can be done without kernel involvement

• Process-specific scheduling policies are possible
• Problem: whole process blocks when one thread block s
(there are ways around this, but they're complex)

• OS can make poor scheduling choices, because OS has
no notion of “amount of work” each process must do

CS414: Operating Systems

“Hybrid”: Solaris 2

•Solaris 2 is a version of UNIX with support for thr eads at the kernel
and user levels, symmetric multiprocessing, and
real-time scheduling.

•LWP – intermediate level between user-level threads and kernel-level
threads.

•Resource needs of thread types:
�Kernel thread: small data structure and a stack; thread switching does not
require changing memory access information – relatively fast.

�LWP: PCB with register data, accounting and memory information,;
switching between LWPs is relatively slow.

�User-level thread: only ned stack and program counter; no kernel
involvement means fast switching. Kernel only sees the LWPs that support
user-level threads.

3

CS414: Operating Systems

Solaris 2 Threads Creation of a ThreadCreation of a Thread

1.1. The thread count in the process object is incremented. The thread count in the process object is incremented.

2.2. An executive thread block (ETHREAD) is created and An executive thread block (ETHREAD) is created and
initialized.initialized.

3.3. A thread ID is generated for the new thread. A thread ID is generated for the new thread.

4.4. The TEB is set up in the userThe TEB is set up in the user--mode address space of mode address space of
the process. the process.

5.5. The userThe user--mode thread start address is stored in the mode thread start address is stored in the
ETHREAD. ETHREAD.

Creation of a ThreadCreation of a Thread

6.6. KeInitThreadKeInitThread is called to set up the KTHREAD block.is called to set up the KTHREAD block.

The threadThe thread’’s initial and current base priorities are set to the processs initial and current base priorities are set to the process’’s base s base
priority, and its affinity and quantum are set to that of the ppriority, and its affinity and quantum are set to that of the process.rocess.

KeInitThreadKeInitThread allocates a kernel stack for the thread and initializes the macallocates a kernel stack for the thread and initializes the machinehine--
dependent hardware context for the thread, including the contextdependent hardware context for the thread, including the context, trap, and , trap, and
exception frames. exception frames.

The threadThe thread’’s context is set up so that the thread will start in kernel mods context is set up so that the thread will start in kernel mode in e in
KiThreadStartupKiThreadStartup. .

Finally, Finally, KeInitThreadKeInitThread sets the threadsets the thread’’s state to Initialized and returns to s state to Initialized and returns to
PspCreateThreadPspCreateThread. .

7.7. Any registered Any registered systemwidesystemwide thread creation notification routines are thread creation notification routines are
called. called.

8.8. The threadThe thread’’s access token is set to point to the process access s access token is set to point to the process access
token, token,

an access check is made to determine whether the caller has thean access check is made to determine whether the caller has the right to right to
create the thread. create the thread.

9.9. Finally, the thread is readied for execution.Finally, the thread is readied for execution. CS414: Operating Systems

Linux Pthreads: Kernel or User-Level – How to tell?

•Run a pthread program, try to infer behavior
�PRO: No need to inspect kernel code
�CON: What behavior are we looking for? (what’s the hypothesis?) – what’s
the test case?

•Google for the answer
�PRO: Where exactly to find the answer?

�http://www.tldp.org/FAQ/Threads-FAQ/OSsCompared.html

�CON: Could be wrong; might learn more by “doing it yourself”
•Linker line has “-lpthread”, so it must be user-lev el

�Not necessarily – this could be just for the pthreads_api, not the “entire
pthreads implementation”

•Evidence: hmmm….
�“grep -i thread uml/linux-2.4.26/kernel/* | wc –l” returns 98
�“grep -i thread uml/linux-2.4.26/arch/i386/kernel/entry.S” returns essentially
nothing…

Process Crashes (Windows 2000)Process Crashes (Windows 2000)
Registry defines behavior for Registry defines behavior for
unhandled exceptionsunhandled exceptions

HKLMHKLM\\SoftwareSoftware\\MicrosoftMicrosoft
\\Windows NTWindows NT\\CurrentVersionCurrentVersion
\\AeDebugAeDebug

Debugger=Debugger=filespecfilespec of debugger to run of debugger to run
on app crashon app crash

Auto 1=run debugger immediately Auto 1=run debugger immediately
0=ask user first0=ask user first

Default on retailDefault on retail
system is system is
Auto=1; Debugger=DRWTSN32.EXEAuto=1; Debugger=DRWTSN32.EXE

Default with VC++ isDefault with VC++ is
Auto=0, Debugger=MSDEV.EXEAuto=0, Debugger=MSDEV.EXE

Process Crashes (Windows XP & Process Crashes (Windows XP &
Windows Server 2003)Windows Server 2003)

On XP & Server 2003, when an unhandled exception On XP & Server 2003, when an unhandled exception
occurs:occurs:

System first runs DWWIN.EXESystem first runs DWWIN.EXE

DWWIN creates a process DWWIN creates a process microdumpmicrodump and XML file and offers the option and XML file and offers the option
to send the error reportto send the error report

Then runs debugger (default is Drwtsn32.exe)Then runs debugger (default is Drwtsn32.exe)

4

Windows Error ReportingWindows Error Reporting

Configurable with Configurable with
System PropertiesSystem Properties--
>Advanced>Advanced-->Error >Error
ReportingReporting

HKLMHKLM\\SOFTWARESOFTWARE
\\MicrosoftMicrosoft\\PCHealthPCHealth
\\ErrorReportingErrorReporting

Configurable with group Configurable with group
policiespolicies

HKLMHKLM\\SOFTWARESOFTWARE
\\PoliciesPolicies\\MicrosoftMicrosoft
\\PCHealthPCHealth

CS414: Operating Systems

Motivation for Scheduling: CPU and I/O Bursts

•I/O-bound process: many short
CPU bursts

•CPU-bound process: very long
CPU bursts

•What should happen to the
CPU when a process performs
I/O?

•What should happen if a
process never/rarely performs
I/O?

load
store
add
store
read from file

wait for I/O

store
increment index
write to file

wait for I/O

load
store
add
store
read from file

wait for I/O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

CS414: Operating Systems

Scheduling

•Multiprogramming:
�running more than one process at a time enables the OS to increase system
utilization and throughout by overlapping I/O and CPU activities

•[Policy vs. Mechanism]
�what to do vs. how to do it
�separation is crucial! WHY?

•[Process Execution State] remember from a few class es ago
�new, ready, running, waiting, terminated

•[Long-Term Scheduling]
�How does the OS determine the degree of multiprogramming (the number of
jobs executing at once in primary memory)?

� Invoked very infrequently (seconds, minutes � may be slow)
•[Short-Term Scheduling]

�How does the OS select a process from the ready Q to execute?
� Invoked very frequently (milliseconds �must be fast)

CS414: Operating Systems

Context Switches:
Voluntary vs. Involuntary

•Voluntary
�context switcher is invoked by the process that intends to relinquish
the CPU (nonpreemptive scheduling); “yield” is for cooperative
model
�I/O requests and termination can also invoke context switcher

•Involuntary
�Interrupt handler executes context switcher (preemptive scheduling)
�Interval timer is used

CS414: Operating Systems

Scheduling Criteria

•user-oriented, performance-related
� [Response Time] (can be referred to as “wait time”) time from submission of
job to start of execution of job

� [Turnaround Time] time from submission of job to completion of job
� [Deadlines] time at which computation must complete

•user-oriented, other
� [Predictability] job should run about the same amount of time regardless of
load

•system-oriented, performance-related
� [Throughout] jobs completed per unit time
� [Processor Utilization] percentage of time that processor is busy

•system-oriented, other
� [Fairness] jobs should be treated the same
� [Balancing Resources] keep all resources busy

CS414: Operating Systems

Algorithm Evaluation

•[deterministic modeling]
�take a particular predefined workload and evaluation algorithm(s)
(like gantt charts); gives exact numbers -- easy to compare; limited
applicability (too specific); {this is what we'll focus on}

•[queuing models]
�use distribution of characteristics of arrivals (arrival times and
execution times); math can sometimes be difficult; too many
independent assumptions

•[simulation]
�programming a model of the computer system; random-number
generators; can be expensive to develop

•[implementation]
�actual implement it and evaluate it in “real operation”; difficulties:
cost, what if environment changes?

5

CS414: Operating Systems

Nonpreemptive Scheduling Policies

Important: Assume jobs are independent unless other wise stated
•First-in First-Out (FIFO): execute jobs to completion in the order of their
arrival

•Example: assume context switch time of 0 seconds; if 2 jobs arrive as the
same time, then job with “lower number” arrived first

Advantage: simple
Disadvantages: short jobs may wait behind long jobs; may lead to p oor overlap of
I/O and CPU; not appropriate for timesharing situat ions

What does the Gantt chart look like?

10205

20104

30103

4002

5001

TurnaroundResponseDurationArrivalJob

