
NTFS Alternate Data Streams (ADS)
What they are, and what they mean for you.

1. Introduction

To properly introduce the insertion of ADS support in NTFS, which started with Windows NT
3.1, we must first take a look in the Macintosh world. As some of you might know, Macintosh
files do not generally have an extension. Yet, the OS is capable of recognizing who made the
application and properly execute it (along with coloring the file based on your settings or other
M ac features). T his is possib le because M acintosh files have tw o “forks”. T he resource fork,
which contains this information, and the data fork, which contains the executable code itself (as a
side note, this has changed in Mac OS X). When Windows NT 3.1 came out, it had compatibility
support for AppleTalk, meaning that NT and MacOS users could easily exchange data. This
caused a problem however, since there was no way to copy the resource fork and the data fork of
a file directly onto the NT file system. Doing so would only copy the data fork, since the
reso urce fork w asn’t p hysically in the file, but in a separate stream. (In other words, the data and
reso urce fork do n’t occup y the sam e cluster o n d isk, o r are part o f the sam e co ntiguo us file).
Microsoft then had to implement NTFS ADS, which meant that NT would see the resource fork
as another stream, and would be able to copy it along with the file onto a Macintosh computer.
Extremely low-level and inaccessib le b y m ost A P Is or p ro gram s, A D S d id n’t beco m e popular
until much later.

2. The dawn of ADS

With Windows NT 4, ADS took on a more important place in the heart of the NT OS. NT 4
started supporting H ard L inks (H ard L inks is so m ething fro m the U nix w orld, it’s the ab ility to
lo gically “m ap ” a file or fo lder to ano ther o ne. F or exam p le,
c:\mymusic\mp3\alex\rock\heavy\2002 can be mapped to C:\Heavy Rock 2002. While this seems
much like a shortcut, a shortcut is an extra file that the Shell has to interpret. You cannot directly
do file operatio ns o n a sho rtcut, and yo u can’t use it in the co m m and p ro m p t. A H ard L ink is a
“p hysical shortcut”.) and so m e anti-virus companies started writing checksums in a special ADS.
However, no official API was made for Hard Links, and checksum ADS were really rare. This
changed in Windows 2000.

3. The golden age of ADS

Windows 2000 brought a number of new features to NTFS, sparse files, summary information
data, ACLs and the Encrypted File System, and an easy to use API to create hard links. All this
information is stored in the ADS of a file. For example, right-clicking on a movie and going to
properties allo w s yo u to enter info rm atio n such as “A uthor, K eyw ord, T itle”. T his inform atio n is
not written in the file itself, but in an ADS. Encrypting a file will also create a special ADS.
Since ADS was becoming more known, some viruses are also known to exploit ADS. Why?
Because Microsoft left a lot of holes in the implementation.

4. W hat’s an A D S a ny w ays?

An alternate data stream, as mentioned in the introduction, is any kind of data that can be
attached TO a file but not IN the file on an NTFS system. The Master File Table of the partition
will contain a list of all the data streams that a file contains, and where their physical location on
the disk is. Therefore, alternate data streams are not present in the file, but attached to it trough
the file table. A typical file contains only a single data stream, called $DATA. This is the data
contained in the file itself, and is not an ALTERNATE data stream, since it is the data stream
itself.

The convention that Microsoft chose for file naming is the following:
filename.extetsion:alternatedatastreamname:$DATA. When you open a file, by any normal
means, you are therefore accessing the $DATA stream. Since there is no alternate data stream,
the file system actually opens filename.extension::$DATA. If however this file had an alternate
data stream called “joe”, and yo u w anted to open it, yo u w o uld have to open
filename.extension:joe:$DATA. I hope this is clear until now.

In the previous paragraphs, I mentioned that an ADS can store Hard Links, Encryption,
Summary Information, etc. However, these are the uses that the OS has for an ADS. You, the
user, can create an infin ity o f A D S for yo ur ow n usage. L et’s see w hy this is useful.

5. What ADS mean for you

If you understood everything until now, you have noticed that ADS are not stored in the file
itself. Y o u m ight be ask ing yo urself “if I store 1M B w orth o f text into an A D S o f a file, w ill the
file beco m e 1M B b igger?” H ere’s the great side abo ut A D S … it w o n’t. S ince the data is never
stored in the file itself, the APIs to retrieve the size of the file will never take into account the
A D S yo u m ight’ve added (o r that the O S added). Just like E xp lorer w ill o nly d isp lay and open
the $DATA data stream (the file itself), Explorer will only show the size of $DATA (the size of
the file itself). Explorer is not exhibiting a bug; any application calling the normal Windows API
will exhibit the same behavior. So what does this mean? It means you can store 2 Gigabytes of
data into the ADS of an empty file and that the OS will display the file as empty. Opening this
file with notepad will result in a blank text page, and even a hex editor would display the file as
empty. The 2GB would however be shaved off your disk, and would you forget the existence of
this ADS, only a reformat would reclaim your space.

6. Small summary

T o review w hat w e’ve learnt till now: An NTFS file is made of data streams. The main data
stream, called $DATA is the file itself and can be opened, read, written or otherwise modified by
any application. You will never see any mention of this data stream. The second type o f data
stream is called an alternate data stream, or ADS. Any kind of information can be stored in an
ADS, and it will remain invisible to the user. The data will never be seen when opening the file,
and the file size of the file will never change. An example of an OS-created ADS is the Summary
Information you can write about a file. A user can create any number of ADS he wants and store
whatever information inside.

7. Clarifications (practical example)

I mention that a user will not see an ADS, but that he can create them. I then say that an ADS
w ill be invisib le to the user… w hat is the po int then? Y o u m ust be w o ndering, and this chap ter
will offer an easy example so you can understand better. Suppose that you have hundreds of
passwords on numerous sites. Y o u share the co m p uter w ith yo ur roo m m ate, w ho isn’t exactly a
genius in co m p uters, b ut w o uld easily find “passw ords.txt”, o r even so m ething m ore “sub tle”.
H ere’s a trick, using A D S , that yo u can use. F irst, open no tepad and paste so m e useless read m e
text. Save this file to c:\readme.txt. Now, click on the start menu, then press run, and type
“no tepad c:\read m e.txt:passw ords.txt”. P ress O K . N otepad w ill ask if yo u w ant to create the file,
since it’s em p ty. O f co urse, N otepad is actually referring to the data stream. Press OK, and then
write down your passwords. Close Notepad, and save the file when it asks you. Now for the test.
Open c:\readme.txt from explorer, or from Notepad or the Run command. You will see your
original readme text, with no mention of your passwords. Check the file size in Explorer or
D O S … it hasn’t changed. N ow go back to the R un co m m and, and type “notepad
c:\read m e.txt:p assw ords.txt”. N otepad w ill open yo ur passw o rds. N ow , assum ing that yo u delete
the Run previously-typed commands, your friend will never have the idea of entering that
co m m and. E ven if he k new abo ut A D S , ho w w o uld he k no w w hich file yo u’ve stored it in, or
w hat yo u’ve called yo ur A D S ? If yo u w ant, yo u can also try running “notepad
c:\windows\exp lorer.exe:passw o rds.txt” and write your information there. Windows and
E xp lo rer w ill run fine, yet yo ur passw ord s w ill be link ed to exp lorer.exe. I do n’t suggest yo u do
that in this example, since the only way to delete the ADS is to delete the file itself (or use my
program …)

8. Malicious usage

“S o w ait… if * I* can store hidden info rm atio n o n m y ow n co m p uter… can’t a hacker or a T rojan
horse pro gram store inform atio n or even executab le code in A D S ? C an’t a joker create a 5G B
file o n m y co m p uter w itho ut m e ever find ing o ut?” U nfortu nately, the answer to all those
questions is yes. Executable code can be placed in an ADS, and even executed, without ever
touching the ho st p ro gram . T hat’s right… using A P I o r the “S tart” co m m and in D O S , yo u can
execute “E xp lorer.exe:T ro jan.exe”. W hat this will do is execute the Trojan program, without
E xp lo rer ever running. T o m ak e m atters w orse, W indo w s 2000 d isp lays “E xp lorer.exe” in T ask
M anager, not “T rojan.exe”. T hank fully, X P has fixed this ho rrib le security b ug. (but it still only
shows explorer.exe:T ro jan.exe… yo u co uld call the file so m ething less co nsp icuo us). This is
NOT a tutorial on how to use ADS to hack, so I will not give any details on how to copy
executab le code or running it. U nfo rtunately, a T rojan m ight’ve alread y do ne that o n yo ur
system, or a more computer-savvy “friend ”. H ere’s the good new s: U sing K ernel N ative A P Is
and the Backup APIs, it is possible to rapidly seek out any ADS on your hard drive, as well as
read/write to them, or delete them.

9. My program

The program attached is a fully working example, complete with comments about almost every
line. It is written in pure API, so even the Form itself is created using API, not the Visual Basic
D esigner. I’ve do ne this for speed, and also to teach yo u a b it m ore abo ut A P I co ntro ls. You can
see in the screensho t that it doesn’t look bad at all. The application is split into modules, so if

you simply want to include Stream functionality in your application, you can use the
StreamModule.

10. Final notes

I greatly recommend compiling the application into a Native EXE for much faster speed. It
should take less then two minutes to scan your whole disk (It takes me 30 seconds, but I have a
fast C P U and H D so I’m estim ating). If yo u find any susp icio us A D S (yo u w ill be ab le to see
their name) or huge sizes (you will also see the size), you can use the Open button to delete
malicious ones, or simply to view/edit the ones you are wondering about. Finally, you can create
your own ADS. For security reasons, my program only allows you to write clear-text ADS, not
executable ones.

E njo y! T his is m y first b ig article, so if yo u find it too hard to understand, p lease do n’t hesitate to
write your comment down. If you have any trouble, or any other comment, also feel free to write
it. I will happily accept any criticism or ideas =) I’m o nly 17 years o ld so sorry if my English
isn’t spotless (It’s m y third language).

FAQ (Frequently Asked Questions)

1. W hy ca n’t the Message Box show executable streams?

A s I said before, this project doesn’t support binary streams for security reasons. The module is
very clearly written and you can always use different methods to display the buffer containing
the data if you wish, after calling ViewStream.

2. W hy a re the re tw o p ro jects? W hat’s _N O A P I?

Because some people might just be interested in the StreamModule itself and the framework used
to m anipulate A D S, I have included a project m ade w ith V B ’s d esigner and using O C X files that
com e w ith V B . T his project has the suffix _N O A P I. W hile it’s m eant for beginners, I strongly
recom m end even interm ediate program m ers to look at the A P I version. It’s m uch faster because
of the list view and status bar being in API.

3. The _N O A P I ve rsion on ly co n tains a fo rm w ith som e co de, an d the S trea m M od ule…
why does it make a bigger EXE then the API version, which has 4 modules filled with
code?

Just because V B ’s designer hides the code for you doesn’t m ean it’s there. M y A P I
implementation is faster and cleaner then what VB does in the background. And it needs no OCX
files at all.

4. I am an advanced programmer or server admin, what are the advantages of using the
API version?

Firstly, you will notice that the scanning is much faster (almost twice as fast), unless you remove
the status bar refresh on each file (but then your application will look hung for two minutes).
Secondly, the API version is 36kb, plus the 1MB VB6 runtime. The _NOAPI version is 40kb, plus
the 1MB VB6 runtime, plus the comdlg32.ocx, plus the comctl32.ocx, all together totaling over
2MB.

Finally, using one of the many API-Call add-ons for VBScript, you can create an automated VBS
file that will scan your server or active directory for any streams, based on your criteria, all
while showing the same GUI as in my VB example, since it was all created in API.

